Command Sequence Processing / Modification of Intended Document Content

From the patent specification:

 “Command” and “Command Sequence”: a command is an antecedent that does not represent content of the intended document but rather indicates an action to be performed in acquiring or processing such content. A command sequence comprises both instructions that indicate steps to be performed and identity information that identifies the subject matter to be processed, location of information to be acquired, etc. Command sequences are ideally performed automatically through appropriate scripting and programming, but these instructions may be carried out by humans.

  * * *

FIG. 4 is a flowchart depicting the full functionality of the UHD embodiment, through which values may be modified and supplemented and numerous other disclosed techniques used to increase information density and usability. Steps may be implemented by human, computer, or both as desired.

First, an intended document is created 401 and evaluated 402. This evaluation is made through consideration of the content of the intended document, the length thereof, and the application/objective for or context within which the resulting chromocode will be used. The criteria for this evaluation include those criteria listed in FIG. 5A, which presents a chart detailing the relative merits of a UHD or VHD chromocode as compared to a conventional barcode under the specified criteria. For instance, if the context for the resulting barcode calls for a chromotif-capable barcode, a UHD chromocode will likely be preferable.

If a high-density barcode is unnecessary, a conventional monochromatic barcode may be used 404. Otherwise, a polychromatic barcode should be used 405. In the latter case, an additional evaluation must be made to determine whether UHD or VHD is preferable 406. In this evaluation, the benefits of greater density are weighed against the benefits of higher tolerance for deviation from color standards 406. If tolerance is preferred 407, a VHD code should be used 408. Otherwise, a UHD code should be used 409.

If UHD is preferred 409, the quantity of information in the intended document is further evaluated 410 to determine whether a referential code is appropriate. If not 411, a strictly additive approach is taken 412. If so, an approach is taken that allows for referential, subtractive, substitutive, and insertive encoding and decoding 413.

Under the latter method path, local and nonlocal external values may be incorporated into the extracted document. If local values are to be incorporated into the extracted document 414, command sequences specifying the values to be obtained from the recipient are generated 415 for inclusion in the encodable document; such a sequence may be in the form of a database query. If nonlocal external values are to be incorporated into the extracted document 416, a target reference document is uploaded 417 to an Internet-accessible server, and a command sequence specifying the URL of this document is generated 418 for inclusion in the encodable document. An example excerpt from a vocabulary comprising sample assignments of identifiers to commands for use in a referential UHD code appears in FIG. 5E. An example excerpt from a vocabulary comprising commands for use in modifying external values after acquisition appears in FIG. 5F.

Note that target reference documents should be simple text (.txt) files consisting solely of content which the user wishes to reference. By contrast, references that require structure, e.g., chromotifs and vocabularies, should be marked-up through use of markup tags (for instance, conforming to XML conventions, if desired). An example of such tagging appears in FIG. 19, which is included as a suggestion, but, as will be apparent to one skilled in the art, alternate tag names and markup structures may be used. For automated processing, the decoding party’s system should contain software suitable for parsing the tagged documents so as to import the appropriate vocabulary and chromotif relationships into memory for use in properly decoding a chromocode by reference to the vocabulary or chromotif so defined.

If any external values are to be modified 419 after acquisition per the processing discussion below, command sequences specifying operations to be performed on these external values are generated 420 for inclusion in the encodable document.

After performance of these steps, the referential, subtractive and substitutive path rejoins the additive path. Content not to be acquired by external reference is then analyzed to identify the most common terms 421 and most common letter combinations 422 therein. A base vocabulary is selected 423 that will provide the greatest information density in light of the results of the analysis of this internal data; if a nonstandard vocabulary is to be gathered from an external source, command sequences specifying the URL of this vocabulary are generated 424 (referential code only) for inclusion in the encodable document. An example excerpt of a vocabulary comprising the most common words in English appears in FIG. 5B. An example excerpt from a vocabulary comprising the most common diagraphs in English appears in FIG. 5C. A example excerpt from a vocabulary comprising the most common terms used in HTML documents appears in FIG. 5D. Multiple vocabularies may be used in conjunction with each other so long as identifier assignments do not conflict.

Any modifications to the default or, if used, selected vocabulary are achieved through the use of vocabulary modification command sequences 425; a vocabulary modification sequence uses a “ReplaceID” nest, within which is specified a particular identifier, and a “WithNewData” nest, within which is provided a new antecedent to be represented by the given identifier in lieu of the antecedent that would otherwise be represented, thereby.

After these steps, the final sequence of identifiers to be included in the encodable document has been determined, and the remaining steps pertain to appearance of the chromocode. The contextual setting in which the code will be used is evaluated 426, taking into consideration such matters as the colors of the packaging to which the chromocode is to be applied. If the use of a chromotif is desirable 427, the appropriate chromotif is selected and specified and any modifications thereto made through command sequences 428; if necessary, the chromotif may be uploaded and referenced by URL.

Finally, the encodable document is reduced to an image comprising data blots colored according to the default color-to-indentifier set or selected chromotif, if any. Calibration blots are also included in the image 429. The resulting final chromocode image may then be applied to a surface.

The process depicted in FIG. 4 can be more fully understood through the following examples illustrating the referential, self-defining, subtractive, substitutive, and other functions.

back to Automatic Identification | Data Capture